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Abstract

Working within the framework of Fŕechet modelled infinite-dimensional manifolds, we propose a
generalized notion of second-order frame bundle. We revise in this way the classical notion of bundles
of linear frames of order 2, the direct definition and study of which is problematic due to intrinsic
difficulties of the space models. However, this new structure keeps all the fundamental characteristics
of a frame bundle. It is a principal Fréchet bundle associated (differentially and geometrically) with
the corresponding second-order tangent bundle.
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1. Introduction

In a previous paper[6], we studied the second-order tangent bundleT 2M of a smooth
infinite-dimensional manifoldM, i.e. the bundle of curves ofM that agree up to their
acceleration. More precisely, a vector bundle structure developed onT 2M provided thatM
is endowed with a linear connection. This study embraced the case of Banach modelled
manifolds as well as that of a certain type of Fréchet manifolds.

Motivated by the fact that a great number of geometric properties of a vector bundle can
be reduced to the corresponding bundle of linear frames, we present in this note a detailed
study of second-order frame bundles.

The case of a Banach modelled manifoldM has already been covered in[7], where we
gave a rather natural extension of the results obtained by Dodson and Radivoiovici in[8],
concerning the classical case of finite-dimensional manifolds. ForM modelled on a Banach
spaceE, the frame bundle of order 2 becomes

L2M =
⋃
x∈M
Lis(E× E, T 2

x M).

This is a Banach principal bundle with structure groupGL(E× E) associated with the
second-order tangent bundle. Moreover, a bijective correspondence between connections
onT 2M andL2M can be established.

However, such an approach does not extend to the case of an infinite-dimensional
manifoldM modelled on a Fŕechet spaceF. In this framework, the general linear group
GL(F× F) does not admit any reasonable Lie group structure and, therefore, even the
definition of the second-order frame bundle is under question. On the other hand, intrinsic
difficulties of the spaces of linear mappings between Fréchet spaces as well as the lack of a
general solvability theory of differential equations, set serious obstacles in the study of the
corresponding geometric entities.

Here we focus on a wide class of Fréchet manifolds: those which can be obtained as
projective limits of Banach manifolds (several examples of these types of structures, which
seem to be popular among theoretical physicists, can be found in[1,3,10,11,25]). Within this
framework we bypass the aforementioned difficulties by introducing a generalized bundle
of frames, which has no longer as structure group the pathological general linear group of
the fibre type, but a new topological, and in a generalized sense smooth, Lie group. The
latter can also be thought of as a subgroup ofGL(F× F) since it consists of projective
systems of linear isomorphisms (cf. Section2).

The tangent bundleT 2M proves then to be associated with this generalized bundle of
frames (Theorem 3.5) while, at the same time, a one to one correspondence between their
connections is revealed (Theorem 4.1).

The paper is concluded with some suggestions of areas of application in physics.

2. Preliminaries

In this first section we present all the basic preliminary notions needed in the sequel of
the paper. We begin with a short description of the type of infinite-dimensional manifolds
that we are going to use.
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Let {Mi;ϕji}i,j∈N be a projective (inverse) system of Banach manifolds modelled on the
Banach spaces{Fi}i∈N respectively. This means that the mappingsϕji : Mj → Mi(j ≥ i)
are smooth and satisfy the following conditions for every choice of indices (i, j, k) with
j ≥ i ≥ k:

ϕik ◦ ϕji = ϕjk.

We further demand that the modelsF
i form a projective system with connecting morphisms

ρji : F
j → F

i(j ≥ i), and limitF = lim← F
i. Assuming that for allx = (xi) ∈ M := lim← Mi

there exists a projective system of local charts{(Ui, ψi)}i∈N such thatxi ∈ Ui and the
corresponding limits lim← Ui, lim← ψi(Ui) are open,M = lim← Mi turns out to be a Fréchet

manifold modelled onF. The corresponding local structure is defined by the charts
{(lim← Ui, lim← ψi)}. Moreover, the tangent bundleTM of M can also be endowed with a

Fréchet manifold structure with model the Fréchet spaceF× F and local trivializations
defined by the projective limits of the differentials{Tψi} being, thus, isomorphic to lim←
TMi.

Concerning the differentiability of mappings between Fréchet spaces we adopt the defi-
nition of Leslie[15,16]. However, the differentiability proposed by Kriegl and Michor[14]
also suits our study.

Some of the main difficulties that one faces in the study of Fréchet manifolds are direct
reflections of intrinsic problems of their models. As already discussed in Section1, these
drawbacks are mainly related with the space of continuous linear mappings. Indeed, within
the framework of Fŕechet spaces the latter do not remain in the same category, although
they are endowed with a topological vector space structure. On the other hand, the corre-
sponding general linear groups fail to be smooth Lie groups or even (non-trivial) topological
groups.

A partial way out, at least, is given by the replacement of the above-mentioned pathologi-
cal structures by a new construction that allows us to work successfully within the framework
of non-Banach spaces. IfF,G are two Fŕechet spaces, we take advantage of the fact that
alwaysthey can be realized as a projective limit of Banach spacesF = lim← F

i,G = lim← G
i

(see, e.g.[23]), and we define

H(F,G) :=
{

(li)i∈N ∈
∞∏
i=1

L(Fi,Gi) : lim← li exists

}
.

This is a Fŕechet space (under the Cartesian product topology) and is going to replace in
our study the space of continuous linear mappingsL(F,G). Focusing now on the invertible
elements of the above structure, we may also define the topological group

H0(F,G) :=
{

(li)i∈N ∈
∞∏
i=1

Lis(Fi,Gi) : lim← li exists

}
,
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which is isomorphic to the projective limit of the Banach Lie groups

Hi
0(F,G) :=

{
(l1, l2, . . . , li)i∈N ∈

i∏
k=1

Lis(Fk,Gk) : ρmk ◦ lm= lk ◦ ρmk, i≥m≥ k
}
.

In view of the previous definitions, we plan to replace the pathological general linear group
GL(F) by

H0(F) := H0(F,F) =
{

(li)i∈N ∈
∞∏
i=1

GL(Fi) : lim← li exists

}
.

The latter can be thought of also as a generalized Fréchet Lie group by being embedded in
H(F) := H(F,F).

Using the above methodology, we have defined in[6] a Fŕechet vector bundle structure on
the second-order tangent bundle (T 2M,π2,M), which consists of all equivalence classes of
curves inM that agree up to their acceleration. To be more specific, if{(Uα = lim← Ui

α, ψα =
lim← ψiα)}α∈I is an atlas ofM andD : T (TM)→ TM a linear connection in the point of

view of [26], obtained as a projective limit of corresponding connections on the factorsDi :
T (TMi)→ TMi(i ∈ N) and associated to a family of Christoffel symbols{Γα = lim← Γ i

α :

F→ H(F, H(F,F))}α∈I (see[12] for a detailed study of tangent bundles and connections
obtained as projective limits), then the following local structure can be defined onT 2M:

Φα : π−1
2 (Uα)→ Uα × F× F

with

Φα([f, x]2) = (x, (ψα ◦ f )′(0), (ψα ◦ f )′′(0)

+Γα(ψα(x))((ψα ◦ f )′(0))[(ψα ◦ f )′(0)]), (1)

where [f, x]2 stands for the equivalence class of the smooth curvef : R→ M with respect
to the relation

f ≈x g⇔ f (0)= g(0)= x, f ′(0)= g′(0) and f ′′(0)= g′′(0).

Under these trivializations,T 2M turns out to be a vector bundle with fibre typeF× F

and structure groupH0(F× F). Moreover,T 2M can be thought of as a projective limit
of Banach vector bundles since it coincides with the limit of the projective system
{T 2Mi; gji}i,j∈N, where the connecting morphismsgji are defined by

gji : T 2Mj → T 2Mi : [f, x]j2 �→ [φji ◦ f, φji(x)]i2,

where [f, x]j2 denotes the equivalence class of all curves inMj that agree up to their
acceleration withf.
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3. Second-order frame bundles of Fŕechet manifolds

Having established in the previous section all the necessary preliminary material, we
present here the main result of this paper. The construction of a frame bundle of order 2 on
a Fŕechet modelled manifold.

In previous work of Dodson and Radivoiovici[8] the case of a finite-dimensional mani-
fold M modelled on Euclidean spaceR

n has been developed successfully. More precisely,
the frame bundle of order 2L2M of M is defined, classically, to be the union⋃

x∈M
Lis(Rn × R

n, T 2
x M),

whereT 2
x M is the second-order tangent space ofM over x. Then,L2M proves to be a

principal fibre bundle overM, with structure group the general linear groupGL(Rn × R
n),

associated with the second-order tangent bundleT 2M. This construction works well also
within the framework of Banach manifolds as detailed in[7].

However, any attempt to apply this methodology to a manifoldM modelled on a Fŕechet
spaceF is doomed to failure in consequence of intrinsic problems with the space model.
The main difficulty is with the general linear groupGL(F× F) of the fibre type which is
almost useless here since it does not admit any reasonable Lie (or even topological) group
structure. As a result, the definition of a smooth fibre bundle structure onL2M, along the
above lines, is not possible.

Our aim here is to overcome these problems by defining a generalized notion of second-
order frame bundle for a wide class of Fréchet manifolds. Those that can be obtained as
projective limits of Banach manifolds.

To this end, letM = lim← Mi be such a manifold, as explicitly defined in Section2, with
connecting morphisms{ϕji : Mj → Mi}i,j∈N and space model the limitF of a projective
system of Banach spaces{Fi; ρji}i,j∈N. Following the results obtained in[6], if we as-
sume further thatM is endowed with a linear connectionD = lim← Di, thenT 2M admits
a vector bundle structure overM with fibres of Fŕechet typeF× F. More precisely,T 2M

becomes also a projective limit of manifolds via the identificationT 2M � lim← T 2Mi. The

corresponding local trivializations are those of relation(1) in Section2.
Our strategy from here can be briefly described as follows:

• We define a principal Banach fibre bundle over each factor manifoldMi (i ∈ N) that
generalizes the classical frame bundle of order 2.

• We prove that these bundles form a projective system with limit the desired generalization
of the second-order frame bundle of the Fréchet manifoldM.

To this end, for eachi ∈ N, we define

F2Mi =
⋃

xi∈Mi

{(hk)k=1,...,i : hk ∈ Lis(Fk × F
k, T 2

ϕik(xi)M
k) and

gmk ◦ hm = hk ◦ (ρmk × ρmk), i ≥ m ≥ k}.
Then, basic for the sequel, the next result can be proved.
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Proposition 3.1. F2Mi is a principal fibre bundle overMi with structure group the Banach
Lie groupHi

0(F× F) := Hi
0(F× F,F× F).

Proof. In view of the realization of a Fréchet space as a projective limit of Banach spaces
(see, e.g.,[23]), we may assume that the canonical projectionsρi : F→ F

i, ϕi : M →
Mi(i ∈ N) are surjective. As a result, for allxi ∈ Mi there exists an elementx ∈ M with
ϕi(x) = xi. Choosing a chart (Uα = lim← Ui

α, ψα = lim← ψiα), a ∈ I, of M throughx, we con-

struct the corresponding trivialization

(π−1
2 (Uα) = lim← (πi2)−1(Ui

α), Φα = lim← Φi
α)

of T 2M (compare with relation(1)) as well as the linear isomorphisms

τα := pr2 ◦Φα|π−1
2 (x) = lim← τiα = lim← (pr2 ◦Φi

α|(πi2)−1(xi)),

wherepr2 denotes the projection ofUα × F
2 to the second factor.

Define the map

pi : F2Mi→ Mi : (h1, h2, . . . , hi) �→ xi

for all (h1, h2, . . . , hi) with hi ∈ Lis(Fi × F
i, T 2

xi
Mi) and the action

(h1, h2, . . . , hi) · (g1, g2, . . . , gi) := (h1 ◦ g1, h2 ◦ g2, . . . , hi ◦ gi) (2)

of Hi
0(F× F) on the right ofF2Mi; then we may check that the mappings

Ψi
α : (pi)−1(Ui

α)→ Ui
α ×Hi

0(F× F) : (h1, . . . , hi)

�→ (pi(h1, . . . , hi), τ1
α ◦ h1, . . . , τiα ◦ hi)

are well-defined bijections. Indeed, the injectivity is a direct consequence of the fact that
eachτiα is a linear isomorphism and the surjectivity is due to the realization of every element
(xi, g1, . . . , gi) ∈ Ui

α ×Hi
0(F× F) in the formΨi

α((τ1
α)−1 ◦ g1, . . . , (τiα)−1 ◦ gi).

As a result, for eacha ∈ I, the set

Xa := (pi)−1(Ui
α)

can be endowed with a smooth manifold structure viaΨi
α modelled on the Banach spaceF

i ×
Hi

0(F× F). Noticing that, for every pair of indices (a, b) ∈ I2, the intersectionΨi
α(Xa ∩

Xb) = (Ui
α ∩ Ui

b)×Hi
0(F× F) is open inΨi

α(Xa), we may conclude thatXa ∩Xb is open
in Xa.

On the other hand, we may verify that the differential structure ofXa ∩Xb as a sub-
manifold ofXa coincides with the one bequeathed byXb. For this, it suffices to prove
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that the mappingΨi
b ◦ (Ψi

α)−1 is a diffeomorphism of (Ui
α ∩ Ui

b)×Hi
0(F× F). Indeed, the

corresponding definitions lead to

(Ψi
b ◦ (Ψi

α)−1)(x, g1, . . . , gi) = (x, ((comp ◦ (T kαb × prk))(x, g1, . . . , gi))k=1,2,...,i),

wherecomp stands for the composition mapping

L(Fk)× L(Fk)→ L(Fk) : (f, g) �→ f ◦ g,

(T kαb)a,b∈I are the transition functions of the second-order tangent bundleT 2Mk andprk :∏i
k=1L(Fk)→ L(Fk) the projection to thekth factor.
Based on this analysis, we may apply the well-known gluing Lemma ([4]; Section 5.2.4)

to conclude thatF2Mi =
⋃
a∈I

Xa is a principal Banach bundle as in the statement.�

The previous construction allows us now to prove that the bundles (F2Mi)i∈N form a
projective system. Indeed, considering, for every pair of indices (i, j) ∈ N

2 with j ≥ i, the
projections

rji : F2Mj → F2Mi : (h1, h2, . . . , hj) �→ (h1, h2, . . . , hi),

as well as the corresponding ones on the structure groups

rhji : Hj
0(F× F)→ Hi

0(F× F) : (g1, g2, . . . , gj) �→ (g1, g2, . . . , gi),

we easily verify that

rik ◦ rji = rjk, rhik ◦ rhji = rhjk (j ≥ i ≥ k).

As a result, the limit lim← F
2Mi exists and can be endowed with a principal bundle structure

as illustrated in the next main result.

Theorem 3.2. The limit lim← F
2Mi is a Fréchet principal bundle over M with structure

groupH0(F× F).

Proof. We observe first that the trivializations ofF2Mi, i ∈ N, defined in the previous
proposition, form projective systems since

(φji × rhji) ◦ Ψj
α = Ψi

α ◦ rji, (j ≥ i).

Therefore, taking into account that lim← (Hi
0(F× F)) ≡ H0(F× F) and lim← Ui

α = Uα, the
isomorphisms

Ψα := lim← Ψi
α : p−1(Uα)→ Uα ×H0(F× F), a ∈ I,
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can be defined, ifp = lim← pi. These mappings provide a local topological trivialization on

the limit lim← F
2Mi which can be thought of also as a differential one under the conventions

of Section2 referring to the generalized differential structure ofH0(F× F). Then, we may
easily check that eachΨα respects the action ofH0(F× F) on the right of lim← F

2Mi defined

by their counterparts on the factors in relation(2). As a result, lim← F
2Mi obtains a principal

bundle structure overM with structure groupH0(F× F) and transition functions satisfying

Ψβ ◦ Ψ−1
α = lim← (Ψi

β ◦ (Ψi
α)−1). �

We are now in a position to define the generalized bundle of frames of order 2.

Definition 3.3. We call thegeneralized bundle of frames of order2 of the Fŕechet manifold
M = lim← Mi the principal bundle

F2M := lim← F
2Mi.

Remark 3.4. Summarizing some main properties of this new bundle we may note that:

(i) The definition proposed is a natural generalization of the classical notion of second-
order frame bundle within the framework of Fréchet manifolds. Indeed, ifM is
a Banach modelled manifold, then the projective systems{Mi;φji}, {F2Mi; rji}
reduce to the trivial ones{M; idM}, {L2M; idL2M}, where L2M stands for the
classical bundle of linear frames ofT 2M. Analogously, the topological group
H0(F× F) coincides with the general linear groupGL(F× F). Thus, the limit
lim← F

2Mi gives precisely the classical second-order frame bundle ofM : F2M ≡
L2M.

(ii) Based on the definition of the trivializations ofF2Mi, we may check that the transition
functions ofF2M take their values not on the entire structure groupH0(F× F) but on
a subgroup of it. Indeed, for every pair of indicesa, b ∈ I, one obtains:

(Ψβ ◦ Ψ−1
α )((xi), (gi)) = lim← ((Ψi

β ◦ (Ψi
α)−1)(xi, (g1, g2, . . . , gi)))

= ((xi), (lim← T iaβ((xi)) ◦ lim← gi))= ((xi), Taβ((xi)) ◦ lim← gi),

where{Taβ}a,β∈I are the transition functions of the second-order tangent bundleT 2M

of M. However, as we may readily verify in view of(1), the second componentTαβ
splits into two families of linear isomorphisms:

Tαβ = (d(ψβ ◦ ψ−1
α ) ◦ ψα)× (d(ψβ ◦ ψ−1

α ) ◦ ψα).

As a result, the transition functions ofF2M take their values in

H0(F)×H0(F) ⊂ H0(F× F).
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(iii) The generalized second-order frame bundleF2M of M apart from being a projective
limit of Banachable principal bundles can be represented also in a form analogous to
that of its factors:

F2M ≡
⋃
x∈M
{(hi)i∈N|hi ∈ Lis(Fi × F

i, T 2
ϕi(x)M

i) : lim← hiexists},

in view of the identification ((h1, h2, . . . , hi))i∈N ≡ (hi)i∈N.

We have shown so far that for a wide class of Fréchet manifolds a generalized notion
of the second-order frame bundle can be defined and endowed with a principal bundle
structure. The termframe bundleis further justified since the second-order tangent bundle
T 2M is associated with this new structure. In the next theorem we prove precisely this basic
result.

Theorem 3.5. For the action of the groupH0(F× F) on the right of the productF2M ×
(F× F):

((hi), (ui, vi))i∈N · (gi)i∈N = ((hi ◦ gi), (gi)−1(ui, vi))i∈N,

the quotient spaceF2M × (F× F)/H0(F× F) is isomorphic withT 2M.

Proof. We denote bỹE the quotient under consideration and by

π̃ : Ẽ→ M : [(hi), (ui, vi)] �→ p((hi)) = lim← (pi(hi)),

its natural projection onM, wherep andpi are the projections of the bundlesF2M,F2Mi

to the corresponding bases. Again in an open smooth covering{(Uα = lim← Ui
α, ψα =

lim← ψiα)}a∈I of M, and{Ψα = lim← Ψi
α : p−1(Uα)→ Uα ×H0(F× F)}a∈I the correspond-

ing trivializations ofF2M obtained inTheorem 3.2, we may define, for eacha ∈ I, the
mappings:

Φ̃α : π̃−1(Uα)→ Uα × F× F : [(hi), (ui, vi)] �→ (p((hi)), Ψ2,α((hi))((ui, vi))),

whereΨ2,α stands for the projection ofΨα toH0(F× F).
Each of these mappings is injective. Indeed, assuming thatΦ̃α([(hi), (ui, vi)]) =

Φ̃α([(hi1), (ui1, v
i
1)]), we obtain first thatp((hi)) = p((hi1)) = (xi) ∈ M = lim← Mi. As a re-

sult, taking into account that (hi), (hi1) ∈ F2M, we conclude that the limits lim← hi, lim← hi1

can be defined. On the other hand, the equality between the second components ofΦ̃a

implies that

((τiα ◦ hi)(ui, vi))i∈N = ((τiα ◦ hi1)(ui1, v
i
1))i∈N,



300 C.T.J. Dodson et al. / Journal of Geometry and Physics 55 (2005) 291–305

where the linear isomorphismsτiα := pr2 ◦Φi
α|(πi2)−1(xi) have already been defined in

Proposition 3.1. Thus, (hi(ui, vi))i∈N = (hi1(ui1, v
i
1))i∈N. Considering the isomorphisms

gi := (hi1)−1 ◦ hi ∈ GL(Fi × F
i), the corresponding projective limit lim← gi can be defined

and, with respect to the elementg := (gi) of H0(F× F), the classes [(hi), (ui, vi)] and
[(hi1), (ui1, v

i
1)] coincide.

Moreover, we can prove thatΦ̃α is also onto. Namely, if ((xi), (ui, vi))i∈N is an arbitrarily
chosen point ofUα × F× F, then settinghi := (τiα)−1 ∈ Lis(Fi × F

i, T 2
xi
Mi), we easily

check that (hi)i∈N ∈ F2M and

Φ̃α([(hi), (ui, vi)]) = ((xi), ((τiα ◦ hi)(ui, vi))) = ((xi), (ui, vi)).

Considering now an arbitrary pair of indices (a, β) ∈ I2 and settingΦ̃α,x := pr2 ◦
Φ̃α|π̃−1(x), we routinely check that the mappings

Φ̃β,x ◦ Φ̃−1
α,x : F× F→ F× F

are linear isomorphisms sincẽΦβ,x ◦ Φ̃−1
α,x = τβ,x ◦ τ−1

α,x.
A direct conclusion of the above line of thought is thatẼ is a vector bundle overM with

local trivializations the pairs{(Uα, Φ̃α)}a∈I and transition functions

Tαβ(x) = Φ̃β,x ◦ Φ̃−1
α,x = τβ,x ◦ τ−1

α,x, x ∈ Uα ∩ Uβ.

In order now to prove that this bundle coincides, up to isomorphism, with the second-order
tangent bundle ofM, we define the mapping

G : Ẽ→ T 2M : [(hi), (ui, vi)] �→ (hi(ui, vi)).

The latter can be defined since for every element [(hi), (ui, vi)] of the quotientẼ the map-
pings{hi : F

i × F
i→ T 2

xi
Mi}define a projective limit, (ui), (vi) belong toF = lim← F

i, hence

the family (hi(ui, vi)) is an element ofT 2M = lim← T 2Mi. Moreover, it is a well-defined

mapping since if the equivalence classes [(hi), (ui, vi)], [(hi1), (ui1, v
i
1)] coincide with re-

spect to the element (gi) of H0(F× F), thenhi ◦ gi = hi1, g
i(ui1, v

i
1) = (ui, vi), i ∈ N, and

(hi(ui, vi)) = (hi(gi(ui1, v
i
1))) = (hi1(ui1, v

i
1)).

On the other hand,G is one to one. Indeed, ifG([(hi), (ui, vi)]) = G([(hi1), (ui1, v
i
1)]), then

hi(ui, vi) = hi1(ui1, v
i
1), for all i ∈ I, and the isomorphismsgi := (hi1)−1 ◦ hi can be defined.

The corresponding projective limit exists, since the same holds true for both families (hi)
and (hi1), and then

((hi1), (ui1, v
i
1)) · (gi) = ((hi1 ◦ gi), (gi)−1(ui1, v

i
1)) = ((hi), (ui, vi)),

thus obtaining [(hi), (ui, vi)] = [(hi1), (ui1, v
i
1)].
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Moreover,G is also surjective. Let (wi) ∈ T 2M = lim← T 2Mi with wi ∈ T 2
xi
Mi, x =

(xi) ∈ M = lim← Mi. Considering a projective limit chart (Uα = lim← Ui
α, ψα = lim← ψiα) of

M as well as its counterpart (Uα = lim← Ui
α,Φα = lim← Φi

α) on T 2M (see also Section2),

we obtain the linear isomorphismτα := pr2 ◦Φα|π−1
2 (x) = lim← τiα : T 2

x M
�→F× F. Then,

((τiα)−1)i∈N ∈ F2M, (τiα(wi))i∈N = (ui, vi)i∈N belongs toF× F and

G([((τiα)−1)i∈N, (ui, vi)i∈N]) = ((τiα)−1(ui, vi))i∈N = (wi)i∈N.

Finally, we observe thatG is a vector bundle isomorphism since it maps the trivializations
of Ẽ to those ofT 2M:

(Φα ◦G)([(hi)i∈N, (ui, vi)i∈N]) = Φα((hi(ui, vi))i∈N) = (Φi
α(hi(ui, vi)))i∈N

= (p((hi)i∈N), ((τiα ◦ hi)(ui, vi))i∈N) = Φ̃α([(hi)i∈N, (ui, vi)i∈N]), a ∈ I,
thus concluding the proof.�

4. Geometric association of the second-order bundles

In view of the last theorem of the previous section, we may also proceed to an association
of the connections of the generalized bundle of framesF2M with the linear connections of
the vector bundleT 2M.

We recall the classical relationship between connections of associated bundles. Namely,
if we consider a connection ofF2M represented by the 1-formω ∈ Λ1(F2M,L(F× F)), a
smooth atlas{(Uα = lim← Ui

α, ψα = lim← ψiα)}a∈I of M, {(p−1(Uα), Ψα)}a∈I the arising triv-

ializations ofF2M and {ωα := s∗αω}a∈I the corresponding local forms ofω obtained as
pull-backs with respect to the natural local sections{sα} of {Ψα}, then a (unique) linear
connection can be defined onT 2M by means of the Christoffel symbols

Γα : ψα(Uα)→ L(F× F,L(F,F× F))

with ([Γα(y)](u))(v) = ωα(ψ−1
α (y))(Tyψ−1

α (v))(u), (y, u, v) ∈ ψα(Uα)× F× F× F.
However, in the framework of Fréchet bundles an arbitrary connection is not al-

ways easy to handle, since Fréchet manifolds and bundles lack basic geometric prop-
erties underlying the cases of finite-dimensional or Banach modelled bundles. In
particular:

• Existence of parallel displacement along smooth curves of the base Fréchet manifold
is problematic due to the lack of a general theory of solvability of linear differential
equations.

• Handling corresponding Christoffel symbols (in the case of vector bundles) or the local
forms (in principal bundles) is seriously affected by the fact that the space of continuous
linear mappings of a Fréchet space does not remain in the same category.
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Such difficulties can be solved if we focus our study on those connections that can be
obtained as projective limits. A detailed study of such types of connections is presented in
[11,12]. In the case of the generalized second-order frame bundle the following characteri-
zation holds.

Theorem 4.1. Let∇ be a linear connection of the second-order tangent bundleT 2M =
lim← T 2Mi that can be represented as a projective limit of linear connections∇i on the

(Banach modelled) factors. Then∇ corresponds to a connection formω ofF2M obtained
also as a projective limit.

Proof. Taking into account that the trivializations of both bundlesT 2M andF2M are
obtained as projective limits of the corresponding trivializations of their factors, we may
proceed as follows:

Every connection∇ = lim← ∇
i is characterized by a family of Christoffel symbols{Γα :

ψα(Uα)→ L(F× F,L(F,F× F))}a∈I that are factorized into the form:

Γα((yi)i∈N)((ui, vi)i∈N) = lim← (Γ i
α(yi)(ui, vi)),

where{Γ i
α : ψiα(Ui

α)→ L(Fi × F
i,L(Fi,Fi × F

i))}a∈I are the Christoffel symbols of∇i.
Connections∇i(i ∈ N) correspond bijectively to a system of connection forms{ωi ∈
Λ1(F2Mi,Hi

0(F× F))}i∈N whose projective limitω := lim← ωi ∈ Λ1(F2M,H0(F× F)) is

the desired connection of the generalized second-order frame bundle ofM with correspond-
ing local formsωα((hi)i∈N) = lim← (ωiα(h1, . . . , hi)), a ∈ I. �

5. Areas for application

Our constructions above have provided in the Fréchet manifold case a suitable bundle of
framesF2M for the second tangent bundleT 2M, which is a vector bundle in the presence
of a linear connection. ThenT 2M is associated withF2M and a one to one correspondence
between their connections is provided.

In a number of contexts, Fréchet spaces of sections arise as configurations of a physical
field and then evolution equations necessarily involve second-order differential operators.
General references to geometric field theory include Albeverio et al.[2] and Deligne et al.
[5]. Paycha[22] provides a summary of useful material and a substantial bibliography on
geometric and operator methods in modern field theory, outlining approaches in Yang-Mills,
Seiberg-Witten and string theory.

Here we mention several contexts where our new results may have a contribution to
make by providing a suitable principal bundle for handling second tangent geometry.

(1) The moduli space of inequivalent configurations is the quotient of the infinite-
dimensional configuration spaceX by the appropriate symmetry gauge group. Typ-
ically, X is modelled on a Fŕechet space of smooth sections of a vector bundle over a
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closed manifold and is a Hilbert Lie group. Inverse limit Hilbert manifolds and inverse
limit Hilbert groups, introduced by Omori[20,21], provide an appropriate setting for
the study of the Yang-Mills and Seiberg-Witten field equations.

(2) Another area of application is the geometric setting of string theory (see[2,5,19]). Here
Teichm̈uller theory is concerned with a configuration space of Riemannian metrics on
a closed Riemann surfaceM. Then,X is a space of smooth sections ofT ∗M

⊗
T ∗M

and it becomes an inverse limit Hilbert manifold. The universal Teichmüller spaceT∞,
i.e. the inductive limit of the family of Teichm̈uller spaces on each surface, can be
obtained as the projective limit of all finite sheeted compact unbranched coverings of a
given closed Riemann surfaceM of genusg ≥ 2. This is a universal object, called the
universal hyperbolic solenoid which can parametrize complex structures on surfaces of
all topologies.

(3) LetM be a finite-dimensional path-connected Riemannian manifold. The space of all
smooth maps from the circle groupS1 to M is the Fŕechet manifoldΛM called the
space of free loops inM. Manoharan[17,18]has provided a number of results onΛM.
A string structure is defined as a lifting of the structure group to anS1-central extension
of the loop group. Suppose thatG̃→ P̃ → X is a lifting of a principal Fŕechet bundle
G→ P → X over a Fŕechet manifoldXand further thatS1→ G̃→ G is anS1-central
extension ofG.Manoharan showed that every connection on the principal bundleG→
P → X together with aG̃-invariant connection onS1→ P̃ → P defines a connection
on G̃→ P̃ → X. Hence there exist connections on the string structure ofΛM.

(4) The groupD of orientation preserving smooth diffeomorphisms of a compact manifold
M is homeomorphic to the product of the group of volume preserving diffeomorphisms
Dµ, of a volume elementµ onM, times the setV of all volumesv > 0 with

∫
v = ∫

µ.
In this case,Dµ can be realized as a projective limit of Hilbert-modelled manifolds
(see[20,21]) and forms the appropriate framework for the study of hydrodynamics of
an incompressible fluid. More precisely, the motion of a perfect incompressible fluid
is a geodesic curveηt of Dµ with respect to the right invariant metric onDµ, which
at e ∈ Dµ is (X, Y ) = ∫

M
〈X(m), Y (m)〉mµ(m).

Moreover, there is a close relationship between geodesics onDµ and the classical
Euler equations for a perfect fluid. Namely, ifηt ∈ Dµ is a geodesic ofDµ as above
andvt = dηt/dt the velocity, then the vector fieldut = vt ◦ η−1

t of M is a solution to
the classical Euler equations

∂ut

∂t
+ ∇ut ut = gradpt, div ut = 0,

ut given att = 0, ut tangent to∂M.

Herept stands for the pressure and∇ for the covariant derivative. Details can be found
in [9].

For recent results see also Golovin[13], who calculated bases of differential
invariants for infinite-dimensional Lie groups, admitted by the Navier-Stokes and gas
dynamics equations. He provided examples of the group stratification for the stationary
gas dynamics and for the transonic gas motion equations.
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(5) The spaceJ∞E of infinite jets of the sections of a Banach modelled vector bundle
E can be realized as the projective limit of the finite corresponding jets{JkE}k∈N.
This approach makes possible the definition of a Fréchet modelled vector bundle on
J∞E and thus the use of the latter for the description of Lagrangians and source
equations as certain types of differential forms (see[11,24]).
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