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Abstract

Working within the framework of Fechet modelled infinite-dimensional manifolds, we propose a
generalized notion of second-order frame bundle. We revise in this way the classical notion of bundles
of linear frames of order 2, the direct definition and study of which is problematic due to intrinsic
difficulties of the space models. However, this new structure keeps all the fundamental characteristics
of a frame bundle. It is a principal &chet bundle associated (differentially and geometrically) with
the corresponding second-order tangent bundle.
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1. Introduction

In a previous papd6], we studied the second-order tangent buridfi@/ of a smooth
infinite-dimensional manifold, i.e. the bundle of curves d¥l that agree up to their
acceleration. More precisely, a vector bundle structure develop@d &hprovided that
is endowed with a linear connection. This study embraced the case of Banach modelled
manifolds as well as that of a certain type oéEnet manifolds.

Motivated by the fact that a great number of geometric properties of a vector bundle can
be reduced to the corresponding bundle of linear frames, we present in this note a detailed
study of second-order frame bundles.

The case of a Banach modelled manifdchas already been covered[if], where we
gave a rather natural extension of the results obtained by Dodson and Radivoig8igi in
concerning the classical case of finite-dimensional manifoldsVRoodelled on a Banach
spaceE, the frame bundle of order 2 becomes

L’M = | ] Lis(E x E, T?M).
xeM
This is a Banach principal bundle with structure gra@p(E x E) associated with the
second-order tangent bundle. Moreover, a bijective correspondence between connections
onT?M andL?M can be established.

However, such an approach does not extend to the case of an infinite-dimensional
manifold M modelled on a Fechet spac&. In this framework, the general linear group
GL(F x F) does not admit any reasonable Lie group structure and, therefore, even the
definition of the second-order frame bundle is under question. On the other hand, intrinsic
difficulties of the spaces of linear mappings betweettRet spaces as well as the lack of a
general solvability theory of differential equations, set serious obstacles in the study of the
corresponding geometric entities.

Here we focus on a wide class oféiéhet manifolds: those which can be obtained as
projective limits of Banach manifolds (several examples of these types of structures, which
seemto be popular among theoretical physicists, can be fofih@id0,11,25). Within this
framework we bypass the aforementioned difficulties by introducing a generalized bundle
of frames, which has no longer as structure group the pathological general linear group of
the fibre type, but a new topological, and in a generalized sense smooth, Lie group. The
latter can also be thought of as a subgroupGdf(IF x ) since it consists of projective
systems of linear isomorphisms (cf. Sect®@)n

The tangent bundl&2M proves then to be associated with this generalized bundle of
frames Theorem 3.5while, at the same time, a one to one correspondence between their
connections is revealedlfeorem 4.1

The paper is concluded with some suggestions of areas of application in physics.

2. Preliminaries

In this first section we present all the basic preliminary notions needed in the sequel of
the paper. We begin with a short description of the type of infinite-dimensional manifolds
that we are going to use.



C.T.J. Dodson et al. / Journal of Geometry and Physics 55 (2005) 291-305 293

Let{M'; ¢/'}; jeN be a projective (inverse) system of Banach manifolds modelled on the
Banach space@};cy respectively. This means that the mappigds: M/ — Mi(j > i)
are smooth and satisfy the following conditions for every choice of indicgsk) with
j=i>k

o o @il = .

We further demand that the modm’Sform a projective system with connecting morphisms
el B — FiY(j = i), and limitF = Iim F*. Assuming that for alk = (x') e M := Iim M’

there exists a projective system of local chdk!, ¥)};en such thatx’ € U’ and the
corresponding limits ImU’ I|m ¥ (U') are openM = I|m M turns out to be a Echet

manifold modelled 0n1F The corresponding local structure is defined by the charts
{(im U, lim ¥*')}. Moreover, the tangent bundi&V of M can also be endowed with a

Fréchet manifold structure with model theéehet spac& x I and local trivializations
defined by the projective limits of the differentigl&y’} being, thus, isomorphic toJim
™',

Concerning the differentiability of mappings betweegdkret spaces we adopt the defi-
nition of Leslie[15,16] However, the differentiability proposed by Kriegl and Miclibd]
also suits our study.

Some of the main difficulties that one faces in the study étRet manifolds are direct
reflections of intrinsic problems of their models. As already discussed in Segtibpse
drawbacks are mainly related with the space of continuous linear mappings. Indeed, within
the framework of Fechet spaces the latter do not remain in the same category, although
they are endowed with a topological vector space structure. On the other hand, the corre-
sponding general linear groups fail to be smooth Lie groups or even (non-trivial) topological
groups.

A partial way out, at least, is given by the replacement of the above-mentioned pathologi-
cal structures by a new construction that allows us to work successfully within the framework
of non-Banach spaces. i, G are two Fechet spaces, we take advantage of the fact that
alwaysthey can be realized as a projective limit of Banach spﬁcesli@ F,G = Ii£1 G!

(see, e.g[23]), and we define

H(F,G) = {(l")ieN e [[e@.G): lim I exists} )

i=1

This is a Fechet space (under the Cartesian product topology) and is going to replace in
our study the space of continuous linear mappii@& G). Focusing now on the invertible
elements of the above structure, we may also define the topological group

o0
Ho(F, G) := {(l")ieN e [[ cis(F'. G : lim I exists} ,

i=1
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which is isomorphic to the projective limit of the Banach Lie groups

i
H{(F, G):= {(11, P, Dy e [] Lis@, GYy: p™ o tm=1F 0 p™ iz m zk} .
k=1

In view of the previous definitions, we plan to replace the pathological general linear group
GL(F) by

Ho(F) := Ho(F,F) = {(1"),-EN € ﬁ GL(F): lim I exists} .
i=1

The latter can be thought of also as a generalizégdhiet Lie group by being embedded in
H(F) := H(F, F).

Using the above methodology, we have defind6jma Fiechet vector bundle structure on
the second-order tangent bundI& 1, 7o, M), which consists of all equivalence classes of
curves inM that agree up to their acceleration. To be more specifitl/if = Ii£1 Ué, Yy =

lim wfx)}ad is an atlas oM and D : T(TM) — TM a linear connection in the point of

view of [26], obtained as a projective limit of corresponding connections on the fam'ors
T(TM') — TM'(i € N) and associated to a family of Christoffel symbéI, = lim I, :

F — H(F, H(F, F))}q.cr (se€[12] for a detailed study of tangent bundles and connections
obtained as projective limits), then the following local structure can be defingd ih

cba:nz_l(Ua)—> Uy, xFxTF
with
Do ([ f x]2) = (x, (Yo 0 f) (0), (Y o f)"(0)
+ T (Ya () (Y © £) O)[(Ya 0 £)' (), (1)

where [f; x]2 stands for the equivalence class of the smooth ciirv® — M with respect
to the relation

frxge f(0)=g0)=x, f(0)=¢(0) and f"(0)=g"(0).

Under these trivializations['2M turns out to be a vector bundle with fibre typex F

and structure grougio(F x FF). Moreover,72M can be thought of as a projective limit
of Banach vector bundles since it coincides with the limit of the projective system
{T?M'; g/}; ;cn, Where the connecting morphisnaé are defined by

g T2MI — T2M': [fx1) > [¢7 o £ ¢ (0]

where [ﬁx]é denotes the equivalence class of all curvesin that agree up to their
acceleration witH.
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3. Second-order frame bundles of Fechet manifolds

Having established in the previous section all the necessary preliminary material, we
present here the main result of this paper. The construction of a frame bundle of order 2 on
a Friechet modelled manifold.

In previous work of Dodson and Radivoiovi8i] the case of a finite-dimensional mani-
fold M modelled on Euclidean spa&® has been developed successfully. More precisely,
the frame bundle of order 22M of M is defined, classically, to be the union

U cis(R" x R", T2M),
xeM

where TfM is the second-order tangent spaceMbver x. Then, L?M proves to be a
principal fibre bundle ove¥, with structure group the general linear grap(R” x R"),
associated with the second-order tangent bufidié. This construction works well also
within the framework of Banach manifolds as detailediih

However, any attempt to apply this methodology to a maniféichodelled on a Fechet
spacel is doomed to failure in consequence of intrinsic problems with the space model.
The main difficulty is with the general linear grodpl(F x F) of the fibre type which is
almost useless here since it does not admit any reasonable Lie (or even topological) group
structure. As a result, the definition of a smooth fibre bundle structuie?af, along the
above lines, is not possible.

Our aim here is to overcome these problems by defining a generalized notion of second-
order frame bundle for a wide class ofgéEhet manifolds. Those that can be obtained as
projective limits of Banach manifolds.

To this end, let¥ = lim M’ be such a manifold, as explicitly defined in Sectiymvith
connecting morphismgy : M’ — M'}; jen and space model the limiit of a projective
system of Banach spac¢g’; p/'}; jcn. Following the results obtained ii6], if we as-
sume further thaM is endowed with a linear connectidn = lim D', thenT2M admits
a vector bundle structure ovdt with fibres of FEchet typdF » F. More precisely?M
becomes also a projective limit of manifolds via the identificalign/ ~ Ii(r_n T?°M'. The

corresponding local trivializations are those of relatjibpin Section2.
Our strategy from here can be briefly described as follows:

e \We define a principal Banach fibre bundle over each factor manifl@ < N) that
generalizes the classical frame bundle of order 2.

e \We prove that these bundles form a projective system with limit the desired generalization
of the second-order frame bundle of the&émet manifold.

To this end, for eache N, we define

PM = U .{(hk)k:]_,___,,' hk e Eis(IFk X Fk, Tjik(xi)Mk) and
x'eM!

gmkohm :hko(pmk X,Omk),l.zm zk}

Then, basic for the sequel, the next result can be proved.
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Proposition 3.1. F°Mlis aprincipal fibre bundle ovel!’ with structure group the Banach
Lie group Hy(F x F) := Hy(F x F,F x F).

Proof. In view of the realization of a Fechet space as a projective limit of Banach spaces
(see, e.g.[23]), we may assume that the canonical projectiphsF — F', ¢' : M —

M'(i € N) are surjective. As a result, for all € M' there exists an elemente M with
¢'(x) = x'. Choosing a charti{, = lim U, ¥, = lim ), a € I, of M throughx, we con-
struct the corresponding trivialization

(5 (Ua) = lim () "1 (UL), @, = lim @},)
<« <«
of T2M (compare with relation1)) as well as the linear isomorphisms
Ty = prao q)aln;l(x) = Iiﬂﬂ T, = IiLn(prz o ¢;|(n;),1(xi)),

wherepr, denotes the projection @f, x F2 to the second factor.
Define the map

Pl PM > M (Wt R, R > i
for all (, h2, ..., h) with i’ € Lis(F' x F', T2 M') and the action
(WL R% R (gh g2 ) = (htogt k2o g? . ki o gl) )
of Hé,(IF x T on the right of 72M'; then we may check that the mappings
wl () YUY — UL x HYF x F) : (b1, ..., hY)
> (PR . R, TR okt L T o i)

are well-defined bijections. Indeed, the injectivity is a direct consequence of the fact that
eachr/, is a linear isomorphism and the surjectivity is due to the realization of every element
(&, gt ..., g") € U, x H{(F x F)inthe formwi((z})~to gl ..., (z) Lo g).

As a result, for each € I, the set

X, = (p)) UL

can be endowed with a smooth manifold structurelgjaodelled on the Banach spd@ex
Hy(F x FF). Noticing that, for every pair of indices:(b) € 12, the intersection?, (X, N
Xp) = (U, NU,) x Hy(F x F) is open in¥,(X,), we may conclude that, N X, is open
in X,.

On the other hand, we may verify that the differential structur&pf X, as a sub-
manifold of X, coincides with the one bequeathed Ky. For this, it suffices to prove
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that the mapping; o (¥) 1 is a diffeomorphism of {, N U!) x Hi(F x F). Indeed, the
corresponding definitions lead to

(o (D) (x, g% o0 g) = (x, ((comp o (Tay, x pri))(x, g% -, ¢ r=12,...):
wherecomp stands for the composition mapping
LE) x LE) — LE): (£8) = fog.

(TX,)a.per are the transition functions of the second-order tangent b€ and pry :
[Ti—1 £(F*) — L(F¥) the projection to théth factor.
Based on this analysis, we may apply the well-known gluing Lenjija%ection 5.2.4)

to conclude tha#?M' = U X, is a principal Banach bundle as in the statemef.
ael

The previous construction allows us now to prove that the bundia/();cy form a
projective system. Indeed, considering, for every pair of indited € N2 with j > i, the
projections

r PMT > PPM (W R, kD) e (R K2 LK),
as well as the corresponding ones on the structure groups

rhit Hé(IF x F) — HS(F x F): (gl, gz, el gj) = (gl, gz, o gi),
we easily verify that
ko pit = pik, rh’*® o rh/t = /% (j =i > k).

rl

As a result, the limit lim72M’ exists and can be endowed with a principal bundle structure
<~
as illustrated in the next main result.

Theorem 3.2. The limitlim F2M' is a Fréchet principal bundle over M with structure
group Ho(F x IF).

Proof. We observe first that the trivializations 8#M!, i € N, defined in the previous
proposition, form projective systems since

(@7 xrh")ow =W or".  (jzi).

Therefore, taking into account that [#H)(F x F)) = Ho(F x F) and limU!, = U, the
isomorphisms - -

v, =limv¥ : p~YU,) > Uy x Ho(F x F),a € I,
<
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can be defined, ip = lim p'. These mappings provide a local topological trivialization on
the limit lim 72 M’ whi§1 can be thought of also as a differential one under the conventions
of Section<_2 referring to the generalized differential structurd®f(F x F). Then, we may
easily check that eaah, respects the action &fo(F x F) on the right of im?—"ZM ! defined

by their counterparts on the factors in relat{@y As a result, (Iim?—‘zMi obtains a principal
bundle structure oveM with structure groufHp(F x ) and transition functions satisfying

Wgo vt =limW)o ). O
<«

We are now in a position to define the generalized bundle of frames of order 2.

Definition 3.3. We call thegeneralized bundle of frames of ordeof the Féchet manifold
M = lim M' the principal bundle

F°M = lim F°M'.
Remark 3.4. Summarizing some main properties of this new bundle we may note that:

(i) The definition proposed is a natural generalization of the classical notion of second-
order frame bundle within the framework of &ahet manifolds. Indeed, ¥ is
a Banach modelled manifold, then the projective systéms; ¢/i}, (F2M'; rii}
reduce to the trivial one$M;idy}, {L>M;id,;z2,,}, where L?M stands for the
classical bundle of linear frames df?M. Analogously, the topological group
Ho(F x F) coincides with the general linear grouL(F x F). Thus, the limit
IiLn F?M' gives precisely the classical second-order frame bundI&f of F2M =
L?M.

(i) Based on the definition of the trivializations 8 M*, we may check that the transition
functions of 72 M take their values not on the entire structure gréigfF x F) but on
a subgroup of it. Indeed, for every pair of indieces € I, one obtains:

(W5 0 ¥ H((x). (&) = lim (¥ o () (', (. 8% ... 8)
= (), (1m Tg((x")) o lim g") = (), Tup((x')) o lim '),
where{T,g}4 ger are the transition functions of the second-order tangent burfdie

of M. However, as we may readily verify in view ¢f), the second componeg
splits into two families of linear isomorphisms:

Tup = (d(Wp o Yy ) 0 Yra) X (d(rp 0 Wi Y) 0 V).
As a result, the transition functions 6£ M take their values in

Ho(F)x Ho(F) C Hp(F x F).
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(iii) The generalized second-order frame bun@feV of M apart from being a projective
limit of Banachable principal bundles can be represented also in a form analogous to
that of its factors:

FM = | J{(hienlh' € Lis(F' x F, 15, M') : lim hiexistg,
xeM

in view of the identification ¢¢*, 42, ..., h"))ieny = (h')ieN-

We have shown so far that for a wide class oé¢tret manifolds a generalized notion
of the second-order frame bundle can be defined and endowed with a principal bundle
structure. The ternframe bundlas further justified since the second-order tangent bundle
T2M is associated with this new structure. In the next theorem we prove precisely this basic
result.

Theorem 3.5. For the action of the groupi®(F x F) on the right of the producF?M x
(F x IF):

(), (', v ien - (€)iew = (B 0 &), (&), v))ien,
the quotient spac&?M x (F x F)/HO(F x F) is isomorphic with’2M.
Proof. We denote byE the quotient under consideration and by

i E— M), ' )] e p((01) = lim(p (1),

its natural projection oM, wherep and p’ are the projections of the bundlé'§M, F°Mi
to the corresponding bases. Again in an open smooth cové(lig= lim U,, ¥, =

lim Vi )aer of M, and (W, = lim vl p~YUy) = Uy x Ho(F x F)}.es the correspond-
ing trivializations of 72M obtained inTheorem 3.2we may define, for each € I, the
mappings:

By 1 7T HUs) = Uy x F x F 1 [(A), (', )] = (p((h)), W2.a((R))((', v))),

wheres , stands for the projection a¥, to Ho(F x F). .
_ Each of these mappings is injective. Indeed, assuming @hdf(%’), (u', v')]) =
Bo([(h1), (i, v})]), we obtain first thap((h)) = p((h})) = (') € M = lim M'. As a re-

sult, taking into account that{), (k) € 72M, we conclude that the limits lira’, lim i}

can be defined. On the other hand, the equality between the second compon@pts of
implies that

((zg o )", v))iew = (7 © K1), v))ien,
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where the linear isomorphisms, := pr; o @él(ﬂé)fl(xi) have already been defined in
Proposition 3.1Thus, @(u', v))ien = (h)(u}, v}))ien. Considering the isomorphisms
= (n Do 1o ht e GL(F! x FY), the corresponding projective limit Ingi can be defined

and with respect to the elemegt= (¢") of HO(F x F), the classes O, (', v)] and
[(h ), (ul, vl)] coincide.

Moreover, we can prove thd, is also onto. Namely if 6(), (u v )),eN is an arbitrarily
chosen point oU, x F x T, then settings’ := (¢},)~* € Lis(F' x F, TjM’) we easily

check that£);cy € F2°M and

Do ([(h'), (', v)]) = ('), ((zf o h)(w', V) = (), (', V).
_ Considering now an arbitrary pair of indices, B) € I? and setting®,,» := prz o
Do l5-1(y), We routinely check that the mappings

GproPyt FxF—FxF

are linear isomorphisms sin@gs , o 55(;’)1‘ = Tp 0 Tyr
A direct conclusion of the above line of thought is tiais a vector bundle oveM with
local trivializations the pair§(Uy,, @4)}ac; and transition functions

Taﬁ(x)Zéﬁ,xO@;}cZTﬁ’xOT;)lc, x € Uy NUg.

In order now to prove that this bundle coincides, up to isomorphism, with the second-order
tangent bundle of1, we define the mapping

G: E— T?M : [(h), (', V)] = (h'(u, V).
The latter can be defined since for every elemei) [(u', v')] of the quotientE the map-
pings{h’' : F* x F' — TjM’}defineaprojectiveIimit,b(’), (v') belong taF = Ii(r_n F*, hence
the family (:(u’, v')) is an element of M = lim T?M'. Moreover, it is a well-defined

mapping since if the equivalence cIasséS)[((u V)], [(h ), (ul, vl)] coincide with re-
spect to the elemeng{) of HO(F x F), thenh! o g' = ki, g(u}, v}) = (4', V'), i € N, and

(R (', ")) = (h' (8" (uy. v1))) = (Ry(uh. vh)).

On the other handG is one to one. Indeed, G([(h), (', V)] = G([(hl) (ul, vl)]) then
hi(ul, o) = hi (ul, vl) foralli € 1, and the isomorphismg := (h} Y=L o ki can be defined.
The corresponding projective limit exists, since the same holds true for both familjes (
and ¢), and then

(1), (s, 1)) - (8) = (8 0 &), ()7, v) = (), (!, v)),

thus obtaining [k), (u’, v')] = [(h ), (ul, vl)]
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Moreover, G is also surjective. Letuf) € T2M = lim T2M’ with w' € T2M', x =
<~
(x') € M = lim M'. Considering a projective limit chartf, = lim U, ¢, = lim v!) of
<« P «—
M as well as its counterpart/f, = lim Ué, @, = lim <1>fx) on T°M (see also Sectiog),
<~ <~
we obtain the linear isomorphism := pr; o ¢>Q|n£1(x) = Ii(r_n th :T2M S F x F. Then,
(i) ™Mien € FPM, (ti(w))ien = (u', v')ieny belongs tdF x F and

G(I((ze) ier, (', v)ien]) = (27, v))ien = (w'ien-

Finally, we observe thd is a vector bundle isomorphism since it maps the trivializations
of E to those of'2M:

(@a 0 G)([(h)ien, (', V)ien]) = Pa((h' (', v))ien) = (P4 (h' (', v)))ien
= (P((W)ien), (7l 0 B)(W', v))ien) = Pal((h)ien, (W', v)ien]), a €L,
thus concluding the proof.]

4. Geometric association of the second-order bundles

In view of the last theorem of the previous section, we may also proceed to an association
of the connections of the generalized bundle of frath&& with the linear connections of
the vector bundl@?M.

We recall the classical relationship between connections of associated bundles. Namely,
if we consider a connection &2 M represented by the 1-form e AYNF2M, L(F x F)), a
smooth atlag(Uy = lim U, ¥4 = lim ¥!)}se; of M, {(p™2(Us), Wa)}aer the arising triv-
ializations of F2M and {wy = s;’ja)f;e, the corresponding local forms af obtained as
pull-backs with respect to the natural local secti¢ng of {¥,}, then a (unique) linear
connection can be defined @fM by means of the Christoffel symbols

Iy Yoq(Uy) = LF x F, L(F, F x IF))

with ([T (1)) (v) = ey *ONT¥5 ()W), (v, u, v) € Ya(Us) x F x F x F.

However, in the framework of Echet bundles an arbitrary connection is not al-
ways easy to handle, sinceéehet manifolds and bundles lack basic geometric prop-
erties underlying the cases of finite-dimensional or Banach modelled bundles. In
particular:

e Existence of parallel displacement along smooth curves of the bashdtrmanifold
is problematic due to the lack of a general theory of solvability of linear differential
equations.

e Handling corresponding Christoffel symbols (in the case of vector bundles) or the local
forms (in principal bundles) is seriously affected by the fact that the space of continuous
linear mappings of a Echet space does not remain in the same category.
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Such difficulties can be solved if we focus our study on those connections that can be
obtained as projective limits. A detailed study of such types of connections is presented in
[11,12] In the case of the generalized second-order frame bundle the following characteri-
zation holds.

Theorem 4.1. LetV be a linear connection of the second-order tangent bu_ﬂ‘&lﬂ =
lim 7°M' that can be represented as a projective limit of linear connect®@hsn the

(Banach modelledfactors. TherV corresponds to a connection fornof 72M obtained
also as a projective limit

Proof. Taking into account that the trivializations of both bundigV and M are
obtained as projective limits of the corresponding trivializations of their factors, we may
proceed as follows:

Every connectiorvV = Ii(r_n V' is characterized by a family of Christoffel symbglg, :

Yo(Uy) = L(F x F, L(F,F x F))},es that are factorized into the form:
Fa((7ien) (@', v)ien) = im (1,0’ v)),

where{I7 : yi(U,) — L(E x F', L', F' x F'))}c; are the Christoffel symbols 6f'.
ConnectionsV'(i € N) correspond bijectively to a system of connection forfasé e
ANF2M!, Hi(F x F))};cn whose projective limit := lim o' € AY (M, Ho(F x F)) is
the desired connection of the generalized second-order frame burM\eiti correspond-
ing local formswy ((h');enN) = Iim(w(’x(hl, o h),ael. O

5. Areas for application

Our constructions above have provided in thedfret manifold case a suitable bundle of
framesZ2M for the second tangent bundi&é M, which is a vector bundle in the presence
of a linear connection. Thef?M is associated wittF>M and a one to one correspondence
between their connections is provided.

In a number of contexts, Echet spaces of sections arise as configurations of a physical
field and then evolution equations necessarily involve second-order differential operators.
General references to geometric field theory include Albeverio §Jadnd Deligne et al.

[5]. Paychd?22] provides a summary of useful material and a substantial bibliography on
geometric and operator methods in modern field theory, outlining approaches in Yang-Mills,
Seiberg-Witten and string theory.

Here we mention several contexts where our new results may have a contribution to

make by providing a suitable principal bundle for handling second tangent geometry.

(1) The moduli space of inequivalent configurations is the quotient of the infinite-
dimensional configuration spaceby the appropriate symmetry gauge group. Typ-
ically, X' is modelled on a Fachet space of smooth sections of a vector bundle over a



)

3)

(4)
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closed manifold and is a Hilbert Lie group. Inverse limit Hilbert manifolds and inverse
limit Hilbert groups, introduced by OmofR0,21], provide an appropriate setting for
the study of the Yang-Mills and Seiberg-Witten field equations.

Another area of application is the geometric setting of string theoryZs&d 9). Here
Teichmilller theory is concerned with a configuration space of Riemannian metrics on
a closed Riemann surfadé. Then, X is a space of smooth sections®fM Q T*M

and it becomes an inverse limit Hilbert manifold. The universal Teidlenspacel,

i.e. the inductive limit of the family of Teichiiller spaces on each surface, can be
obtained as the projective limit of all finite sheeted compact unbranched coverings of a
given closed Riemann surfatéof genusg > 2. This is a universal object, called the
universal hyperbolic solenoid which can parametrize complex structures on surfaces of
all topologies.

LetM be a finite-dimensional path-connected Riemannian manifold. The space of all
smooth maps from the circle grouf} to M is the Féchet manifoldAM called the
space of free loops iN. Manohararj17,18]has provided a number of results am/.

A string structure is defined as a lifting of the structure group t§'aoentral extension

of the loop group. Suppose that— P — X is a lifting of a principal Fechet bundle

G — P — X overaFechet manifolKand further thas® — G — G is anst-central
extension of5. Manoharan showed that every connection on the principal bundle

P — X together with &-invariant connection o8 — P — P defines a connection
onG — P — X. Hence there exist connections on the string structucédt

The groupD of orientation preserving smooth diffeomorphisms of a compact manifold
M is homeomorphic to the product of the group of volume preserving diffeomorphisms
D,,, of a volume element onM, times the seY of all volumesv > O with [v = [ u.

In this caseD,, can be realized as a projective limit of Hilbert-modelled manifolds
(see[20,21)) and forms the appropriate framework for the study of hydrodynamics of
an incompressible fluid. More precisely, the motion of a perfect incompressible fluid
is a geodesic curve, of D, with respect to the right invariant metric dn,, which

ate € Dy is (X, Y) = [,,(X(m), Y (m))pu(m).

Moreover, there is a close relationship between geodesi@,cand the classical
Euler equations for a perfect fluid. Namelyyif € D,, is a geodesic oD,, as above
andv, = dn,/dt the velocity, then the vector field, = v; o nfl of M is a solution to
the classical Euler equations

0 )
% + V,,u, = gradp,, divu, =0,

u; givenatt = 0, u, tangent to M.

Here p, stands for the pressure awdor the covariant derivative. Details can be found
in [9].

For recent results see also GoloVih3], who calculated bases of differential
invariants for infinite-dimensional Lie groups, admitted by the Navier-Stokes and gas
dynamics equations. He provided examples of the group stratification for the stationary
gas dynamics and for the transonic gas motion equations.
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(5) The space/*°E of infinite jets of the sections of a Banach modelled vector bundle
E can be realized as the projective limit of the finite corresponding{j&t€}cn.
This approach makes possible the definition of @chet modelled vector bundle on
J®E and thus the use of the latter for the description of Lagrangians and source
equations as certain types of differential forms (gelg24).
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